Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
A basic introduction to the most powerful tools in science and enginnering.
As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
I agree that Chaitin has not provided a proof that there is no TOE. Furthermore, almost none of what he says is welldefined. Omega itself is not a number, but rather a function of an arbitrary universal Turing Machine.
Chaitin says that the Godel Sentence is true but for no reason since Mathematics is actually random, so there is no proof of it. But the Godel Sentence is true because of how it is constructed, and we can in fact prove it true  Godel proves it true or else his article would be worthless, a theorem without a proof  we simply can't prove it using Godel's formal system. Godel himself says that what his formal system cannot prove can be proven using metamathematics.
Chaitin says that he has a better proof of incompleteness than Godel, but Rosser already did that by proving a stronger theorem. Godel's proof requires wconsistency, but Rosser's proof works with any consistent system, which includes all wconsistent systems and also others. It is a stronger result. So it makes no sense to offer more proofs of a weaker theorem. Rosser's theorem is stronger.
Chaitin says that Omega is the chance that a random Turing Machine will halt. Whatever way he defines a number, it cannot be the probability that a random Turing Machine will halt because there is no such probability. The notion of that being a probability is not welldefined. We can easily construct a Turing Machine (program) that halts for the first few inputs, loops on the next inputs for a lot more inputs, halts on the next inputs for even more inputs etc. so the chance that it halts fluctuates between 1/3 and 2/3, depending on how many inputs you consider. It diverges rather than converges.
Chaitin says that he learned Godel's proof as a child, but he has never discussed the actual proof based on wconsistency, or even mentioned Rosser's proof. Furthermore, even when he talks about the far simpler Turing proof of the Unsolvability of the Halting Problem, he gets it wrong. He says that a program that would tell if another program halts could be run on itself. But that program has an input, while the input of that program is a single program with no input. What Turing actually defined was a program that halts if its input does not halt on itself, and loops if its input does halt on itself. The input is a single program because that program's input is itself.