Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
When I was at college in the '80 in Derbyshire this was something our computer studies teacher talked about, he had read an article in a forth magazine about this and described it as being 6174 as the center of a series of concentric rings when plotted as a scatter diagram.
After listening to him prattle on about it for so long I eventually set out to prove that he didn't know what he was talking about (not unusual). So on the first day I wrote a program to calculate the route to 6174 for all 4 digit numbers, unfortunately I only had 32k of ram on my home machine and no floppy and I also needed 20k for high resolution graphics. Clearly since any calculation with the same digits would yield the same result I used 4 different FOR loops to reduce the storage requirement.
so
for a= 9 to 0
for b= a to 0
for c= b to 0
for d =c to 0
This allowed me to store and plot the results and it was nothing like as described. Apparently, my teacher explained the scatter diagrams had been rotated to make the plot of concentric rings, LOL
Anyway I said to my teacher that next I would plot the steps for all 4 digit numbers as the start of my proof investigation, when I came into college the following day my teacher said that he has passed my original ideas to the high level course and my work was a waste of time. I pointed out that in their plot they found that most numbers were not a route to 6174 and so were a jumble this as I had discussed the problem with my father who pointed out that the result of this operation is always a multiple of the base 1. Again I was finding storage a problem so I used the model discussed in the forth magazine to keep things simple, i.e. order digits high to low then reading left to right subtract 4rd digit from 1st and 3rd from second so for 7641 that would give the model 62. All numbers with model 62 in base 10 give 6174 as a result in 1 operation. Other models also share the same number of steps to reach that number. So plotting just the models you can see a much smaller graph and this moved me closer to being able to say how many steps would be required before reaching 6174.
So my question is, has anyone else produced the proof for this and answered why the numbers act this way to reach 6174 and also why 5 digits for example make a ring instead of a single number? after my experiences with my teacher I haven't published or discussed my own work on this with anyone else.