Add new comment


Thanks for a clear explanation of the link between the Mandelbrot set and Julia sets.
I have a question regarding the number of real-valued super attractors. By a super attractor, I mean a complex number c such that 0 is mapped to 0 after n iterations, where the map is f(z) = z^2– c. The number of period-n super attractors is 2^(n-1) less the number of super attractors for each proper divisor of n.
Is it true that, if n is an odd prime, the number of real-valued super attractors is [2^(n-1) - 1]/n?

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.