Add new comment


Fermat was keen to prove his conjecture (FLT) for exponents 3, 4 & 5 because once this is achieved then it automatically extends to all integer exponents. My guess at the "marvelous proof" claimed by Fermat is as follows:
Let us imagine solid unit cubes (of side unity) to represent the number '1'. Then 'x' of these would represent the number 'x' and let us imagine these are placed in a linear array. We can then place 'y' of these unit cubes to represent the number 'y'.
We can similarly contruct 'x^3' (cube of 'x') using the unit cubes by extending the linear array to a square array and finally 'x' layers of the square array to form the cube - 'x^3'. The cube of 'y' can be similarly contructed and placed alongside the cube of 'x'.

FLT asserts that the sum of the cubes of 'x' and 'y' cannot be equal to another cube, say of 'z'.

Now, 'x^4' - the exponent 4 of 'x' - can be constructed by a linear array of the cubes of 'x' - taking 'x' numbers of the cubes of 'x'. Similarly we take 'y' numbers of the cubes of 'y' and place these two linear arrays of 'x^3' and 'y^3' alongside.
Then the exponent 5 for 'x' and 'y' would be represented by square arrays of the cubes of 'x' and 'y'.

FLT states that the sum of 'x^4' and 'y^4' cannot be equal to any 'z^4'. Similarly for exponent 5. Also, there exists proof for exponents 3, 4 & 5.

Finally, the exponent 6 for 'x' and 'y' will turn the square arrays of cubes into "super-cubes"!! And exponent 7 would be a repeat of exponent 4 as above; exponent 8 would be a repeat of 5 and exponent 9 will again form "super-super-cubes", that is, essentially exactly like the first cube (x^3)!

Therefore if FLT is true for exponents 3, 4 & 5 then it is true for exponents 6, 7 & 8 and again for 9, 10 & 11 and so on for all the integers!

Please tell me if this holds water or is there a flaw in my reasoning?
Jimmy A. M. Kazmi, Hyderabad, India

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.