Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
M=mgL=ω×JΩ
where JΩ is angular momentum.
This is the equation i get when modeling a wind turbine as a suspended spinning bicycle wheel. This means that a moment will act on the turbine, tilting the nacelle either up or down.
But what about the resisting torque when one attempts to yaw the turbine by applying a ω through a yaw motor. This equation doesn't help me right, since im applying a ω and the JΩ stays the same. so there should be a torque generated somehow resisting the yaw?