Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
A basic introduction to the most powerful tools in science and enginnering.
As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
M=mgL=ω×JΩ
where JΩ is angular momentum.
This is the equation i get when modeling a wind turbine as a suspended spinning bicycle wheel. This means that a moment will act on the turbine, tilting the nacelle either up or down.
But what about the resisting torque when one attempts to yaw the turbine by applying a ω through a yaw motor. This equation doesn't help me right, since im applying a ω and the JΩ stays the same. so there should be a torque generated somehow resisting the yaw?