Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
Nice article, even though I'm coming across it 20 years after it was written. Here's another way to get a distribution that favors numbers starting with 1, then 2, etc.
Generate sets of random numbers according to the following scheme.
1. Select a range, 0 to n for some n.
2. Select k numbers in that range at random.
3. Repeat indefinitely.
How do you select n, the top of the range? Make that random in the range, say, 0 .. 99.
Any n will allow selection only of numbers from 0 .. n. So higher number, i.e., those greater than n will be excluded.
Given that we are performing this process multiple times, with a new n each time, when we aggregate all the random number collections it will include all numbers. But lower numbers will be more frequent than higher numbers because we select the top of the range to exclude larger numbers.
I haven't tried this experimentally. I wonder how close it would come to Benford's Law.