Since July 2016, the following statements are established : 1- " Any even number is a difference of two odd prime numbers " 2- "Any odd number is a prime, or a sum or a difference of an odd prime number and the even prime number 2 ".
Therefore, taking into account the classic Goldbach conjecture* stating that "An even number greater than 2 may be expressed as the sum of two prime numbers ", the following general statement is established: " Any integer number is a prime, or a sum or difference of two prime numbers ". More info will be available shortly. in the meantime, the above statements may be checked and double checked.
*also established.
Tony GOMIS

Since July 2016, the following statements are established : 1- " Any even number is a difference of two odd prime numbers " 2- "Any odd number is a prime, or a sum or a difference of an odd prime number and the even prime number 2 ".

Therefore, taking into account the classic Goldbach conjecture* stating that "An even number greater than 2 may be expressed as the sum of two prime numbers ", the following general statement is established: " Any integer number is a prime, or a sum or difference of two prime numbers ". More info will be available shortly. in the meantime, the above statements may be checked and double checked.

*also established.

Tony GOMIS