Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
Given any angle ABC
Centre the vertex draw an arc to cut the two arms: AB in P BC in S
Join PS
Centre P and radius = PS draw a long seeking arc.
Centre S and radius PS, draw a defining arc to cut the arc centre P inD
Join DB
BD will cut PS at its mid point, E
Centre E and radius EP draw a semi circle to cut PS at P and S.
Centre P and radius EP draw an arc to cut the semi circle centre E at Q
Centre S draw an arc radius ES, to cut the semicircle centre E at R
Join BQ, BR these lines will trisect thew circle.
The development of this technique rests on the extension of the Basic circle equality: equal chords in the same circle subtend equal angles at the circumference.
Given three equal adjacnt angles from the centre of a circle, then the subtending arcs will subtend three equal adjacent angle at any point on any concentric circle.
My paper which is being stolidly ignored by academia, (is in fact copyright) and contains euclidean style proofs leading up to and including the new equal angles proposition. I am willing to share the entire paper with anyone hwo promises to honour the copyright.