Add new comment


This and other texts I have read concentrate on the elasticity of the racquet. As a tennis player ( and civil engineer ) my experience strongly suggests that the string tension and modulus of elasticity are just if not more important. Many players use different string type in the longitudinal as opposed to the cross strings while others use different tensions. there seems to be little science involved. My inclination is to attempt to share the impact force of the ball equally between the longitudinal and cross strings by using the one string type and a higher tension in the longitudinal strings.
At this stage the mathematics is beyond me so its trial and error. Best results so far are a tension difference of 5 lbs.
Would appreciate any advice.

Garth Wenck .

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.