Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
I am surprised you didn't mention continuous, uncountable infinity vs. infinite arrays/lists.
For example, temperature, while we know that due to quantum mechanics, it is in fact digital, Aristotle would probably have thought that it was analog, smooth.
These are measured as real numbers.
You can count to 10, 57, or 4.
You can even count to 9, 0, etc, by counting like this:
0,1,1,2,2,3,3...
You can even count to 562/197 if you are clever.
1/1, 1/1, 1/2, 1/2 2/1, 2/1, 3/1, 3/1, 2/2, 2/2, 1/3, 1/3. This will eventually reach 562/197. It will be the 315676th item in the list.
But, try and count the irrational or real numbers.
some hypothetical way of counting:
a.bcde...
f.ghij
k.lmno
p.qrst
u.vwxy
but.... I can think of a number that isn't on that list, it has the first digit of the first number, plus 1, as its first digit, second of second, +1, as its second, etc. Basically, I can do this no matter what crazy scheme you count with.
I guess +1 means +1 mod 10 in this case, since we don't want a 10 as a digit.