But what if the inputs into (a+b)² are themselves squares or more precisely pythagorean triples a²+b²=c². Then you will find we generate 3 related pythagorean quadruples, 2 with all 4 terms positive and the other with 3 positive and 1 negative term. (This later quadruple is WRONGLY NOT classified as a pythagorean quadruple by mathematicians). So for 3²+4²=5² we get: (i) 25² =20²+12²+9² : (ii) 25² =16²+15²+12² (iii) 20² =16²+15²-9² and this applies to every single pythagorean triple.
The Fermat triple is easily shown to algebraically generate the 3 self same quadruples but with the exponent 2 replaced by n but it should be observed that 2 terms in each quadruple are perfect squares since (aⁿ)(aⁿ)=a²ⁿ=(aⁿ)² and therefore all 3 quadruples can be stated as the difference of 2 squares. Someone on U-Tube has named them Fermat - Bateman quadruples. Furthermore every square integer and therefore every (aⁿ)² can be expressed as a NEGATIVE pythagorean quadruple whose terms are simple to derive so for example: 20² =16²+13²-5². Taking D² =C²+B²-A² then D-C=4 : B-A=8 : B+A= (D+C)/2. For D odd then B & A are rational with a decimal fraction of 0.5.
Also every integer of the form (4n)² is the sum of 4 adjacent odd integers squared minus 20=4²+2² hence 20² =13²+11²+9²+7²-20 and which includes every (4nⁿ)². Note that the sum of the 2 largest terms which for the example is 13+11=24 and is always 4 more than the total sum. So every term of a Fermat triple if one existed would have a simple solution in terms of squares after squaring once or infinitely many times so as Pierre de Fermat said 350 years ago triples above the second power cannot exist. So for it to be repeatedly stated and dogmatically defended that the tools for him to have proved his theorem did not exist in his day is at the least erroneous and at worst a lie. It is for the reasons given that no quadruples above the 4th power are known simply because they do not and cannot exist. It is worth stating that cubic quadruples also contain infinitely many related trios but none are algebraically of the construction of Fermat-Bateman quadruples. For example: 12³=10³+9³-1³ : 9³=8³+6³+1³ : 12³-10³=9³-1³=8³+6³ therefore 12³=10³+8³+6³ divide by 2³ gives 6³=5³+4³+3³ the smallest all integer cubic quadruple.

But what if the inputs into (a+b)² are themselves squares or more precisely pythagorean triples a²+b²=c². Then you will find we generate 3 related pythagorean quadruples, 2 with all 4 terms positive and the other with 3 positive and 1 negative term. (This later quadruple is WRONGLY NOT classified as a pythagorean quadruple by mathematicians). So for 3²+4²=5² we get: (i) 25² =20²+12²+9² : (ii) 25² =16²+15²+12² (iii) 20² =16²+15²-9² and this applies to every single pythagorean triple.

The Fermat triple is easily shown to algebraically generate the 3 self same quadruples but with the exponent 2 replaced by n but it should be observed that 2 terms in each quadruple are perfect squares since (aⁿ)(aⁿ)=a²ⁿ=(aⁿ)² and therefore all 3 quadruples can be stated as the difference of 2 squares. Someone on U-Tube has named them Fermat - Bateman quadruples. Furthermore every square integer and therefore every (aⁿ)² can be expressed as a NEGATIVE pythagorean quadruple whose terms are simple to derive so for example: 20² =16²+13²-5². Taking D² =C²+B²-A² then D-C=4 : B-A=8 : B+A= (D+C)/2. For D odd then B & A are rational with a decimal fraction of 0.5.

Also every integer of the form (4n)² is the sum of 4 adjacent odd integers squared minus 20=4²+2² hence 20² =13²+11²+9²+7²-20 and which includes every (4nⁿ)². Note that the sum of the 2 largest terms which for the example is 13+11=24 and is always 4 more than the total sum. So every term of a Fermat triple if one existed would have a simple solution in terms of squares after squaring once or infinitely many times so as Pierre de Fermat said 350 years ago triples above the second power cannot exist. So for it to be repeatedly stated and dogmatically defended that the tools for him to have proved his theorem did not exist in his day is at the least erroneous and at worst a lie. It is for the reasons given that no quadruples above the 4th power are known simply because they do not and cannot exist. It is worth stating that cubic quadruples also contain infinitely many related trios but none are algebraically of the construction of Fermat-Bateman quadruples. For example: 12³=10³+9³-1³ : 9³=8³+6³+1³ : 12³-10³=9³-1³=8³+6³ therefore 12³=10³+8³+6³ divide by 2³ gives 6³=5³+4³+3³ the smallest all integer cubic quadruple.