Add new comment

Permalink

I like the explanation here distinguishing between the Reimann and Euler zeta functions, but I am still skeptical about their use in characterizing divergent sums.
Even though the Reimann zeta function gives a value for the attraction between two metal plates in a vacuum that matches the value given my QM, it still does not make the sum of the natural numbers or QM any more real. Sure, the both have utility in explaining things: i.e. the force between two plates, but that does not definitively exclude other possibilities.

Galileo sort of argued this for planetary motion to appease the church: you don't have to really believe that the Earth revolves around the sun, but if you want predict where planets will be, you can do the math as if the Earth does revolve around the sun.
And Einstein's general relativity: An elevator sitting in a gravitational field behaves as if we are in an elevator in an accelerating spaceship. Since there is no distinguishing these two scenarios, they are equivalent.
Finally, if Fourier series can represent other functions (I am thinking about X-ray crystallography) then which is more real: the Fourier co-efficients or the values of the real function. If they can both represent the same thing, but it is useful to use one sometimes and the other at other times, can one be more real than the other?
Back to QM and the sum or natural numbers... I wonder whether the treatment of the problem is incorrect (unreal) in both cases, but it cancels each other out to arrive at accurate values. Aren't there other theories still around that describe subatomic events without invoking QM? If these are applied to the Casimir plates, maybe it bypasses the Euler zeta function and uses the Reimann zeta function.

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.