Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
I must disagree with your assumption that we should not use anything not seen in nature in Mathematics. That may be a useful viewpoint in some sciences, but Mathematics often disconnects itself with reality only for the reality that belongs with it to be found later. In the 1500s, complex numbers were regarded as a ridiculous concept, yet now they are well accepted, their properties well documented, and natural cases have been found where they are used frequently. In electrical engineering, for example, heavy use is made of complex numbers. The concepts of infinitesimal and infinity are indeed quite necessary, as without it the idea of convergence and differentiation are less welldefined, perhaps impossible. So if your job, whether by its nature, its equipment, or otherwise relies on calculus, you do indeed need infinitesimals. Avogadro's number and the speed of light as values are solely decided by the measurements we use to find them, while π, e, γ, ρ, and many other Mathematical constant's don't change, regardless of measurement.