Add new comment

Listen carefully in the explanation video. At one point, the man suggests the series s1 = 1 - 1 + 1 - 1 ... should be taken to be 1/2. The reasoning he gives for this is that "if we stop at an odd point the sum equals 1, if we stop at an even point then the sum equals 0". Both of those are true on their own, but hold on. If we "stop" at a point to observe a value, then that value must just based on that one part of the total sum. We can derive a value by averaging two repeating parts of our sum, but this means that the value is based on the parts, not the sum itself. the fact that the series 1 - 1 + 1 - 1 ... is cyclic (repeats the same pattern of numbers) allowed the presenter to derive a fact about all the parts at once, but this fact was not the sum of the series. The rest of their calculations are all derived from this one, and thus are all based upon facts about the parts that make up the sum, rather than what it equals, or "sums". This doesn't mean that the calculations are useless, though. These numbers represent facts about the sums that could prove useful.

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.