Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
Teo tells us about his work in artificial intelligence, his travels around the world, and how inspiration sometimes strikes in the pub.
Clouds make the weather, yet their detail isn't taken into account in weather forecasts. Artificial intelligence might be able to help.
Predicting the weather is hard. With more data and computing power becoming available, artificial intelligence can help.
How does your phone know what the weather's going to be like?
How a little insect can cause chaos.
I think, rearranging (1-1+1-1+1-1...) as (1+1+1+1...) - (1+1+1+1...) is not valid because of the "shifting" of values, and decomposing of one infinity into two. If you insist on "proving" equality to 0 - there is an easier way: just use parenthesis like this: (1-1)+(1-1)+(1-1)... = 0 + 0 + 0 ... which is "clearly" zero. Right? Not really.
This has been bugging me all day, and the best "intuitive" explanation may be based in physics: If you draw (1-1+1-1+1-1...) on a graph assuming it's some physical value over time - it's easy to see that 1/2 is the center of oscillation. So, even though the graph never converges to 1/2 - in the infinity it may as well converge. Given the example with a light bulb.. which is ON or OFF, in the infinity, the bulb would be neither ON or OFF - it would be half-bright. If you start sequence with -1, you get an oscillating line around -1/2. So, that makes sense too. If you start doing tricks like (1-1)+(1-1)+(1-1)... = 0 + 0 + 0 ... -- it's easy to see that the trick here is selectively collapsing time intervals to 0, which doesn't make sense in the physical sense.
I started today thinking that (1-1+1-1+1-1...) = 1/2 was a fallacy, but now I think it's actually true, and it starts to make sense. However, I'm still to make the leap to understanding how (1+2+3+4+5+...) = -1/12 can be a useful fact, even if it's mathematically correct.