Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
We talk to Stuart Johnston who uses mathematics to find out how noise pollution in the oceans impacts whales.
Generating electricity without the use of fossil fuels is not just an engineering and industrial challenge, it is also a huge mathematical challenge.
In this podcast author Coralie Colmez shares insights into her novel The irrational diary of Clara Valentine.
We talk to early career mathematicians who spent some of their summer holiday solving problems posed by industry — such as how to blend a perfect smoothie!
Don't like plant-based meat alternatives, but want to spare animals and the environment? There's hope on the horizon, aided by a good helping of maths.
The series 1-1+1-... does not converge to anything in particular, but is "summable" to 1/2 [G.H.Hardy, "Divergent series", pp.6-7]. That is to say, there exists an axiomatic framework within which the assignment of 1/2 as the sum of the series 1+1-1+1-... is unambiguous. In fact, Hardy goes on to call the (really) simple axiomatic framework (two axioms of manipulation of series—and, most importantly, which are perfectly valid for convergent series—suffice to compute a value for this series) "Pickwickian." So, it is most certainly not merely a "zeta-funciton complex analysis trick" that makes 1-1+1-... = 1/2. The point (implied, but perhaps not sufficiently emphasized by your differentiating between Euler's and Riemann's zeta function!) is that since a series such as "1-1+1-..." does not converge to anything in particular, it requires a context (an axiomatic framework) within which to acquire a meaningful value.