Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
This “is” business is tricky. Intransitivity does more damage to identity than “instantiation” because the verbal “engine” of the sentence infers linguistic syntax as a machine, much as Norbert Weiner information theory is prequelled by the second law of thermodynamics that is used to define engine efficiency. Entropy negation in both information technology and mechanical engineering equilibrates a sliding scale sifting the amount of work produced by a steam engine covalent with the clarity of Herman Melville’s sentences. Thus, as intransitivity approximates identity or partial similarity, greater efficiency/clarity results from the momentum turned by verbal transitivity which transforms the “instant” into momenttomoment differentiation cascading a Newtonian rainbow of calculus.
The equilibration of “is” as the mathematical symbol that separates two halves of an equation, as Butterfield concurs above, may be a different matter altogether indicating the mathematical basis for linguistic behavior is chicken v. egg generated by sapient process. The very notion of “to be” as the verbal form of (=) inversely grounds language as a precursor of, not math itself; but rather as the skeleton key Man has used to ascend to it vide Bronowski’s 1969 equivocation of Roman numerals as a concatenation algebra similar to Chomsky/Rosenbloom 1965 in 'Aspects of the Theory of Syntax': “The European notation for numbers then was still the clumsy Roman style, in which the number is put together from its parts by simple addition [Ascent of Man p. 168].”
I have more on the topic in my compendium, ‘The Linguistics of Math,’ that nobody is interested in reading. Regards to Dr. Abrams.
Rick Goranowski goranowskirick@yahoo.com