Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
A basic introduction to the most powerful tools in science and enginnering.
As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
So having read all the comments on how this works, would I be right in saying that Graham's number is
"
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
"?
I used the information on g1 supplied by "The epic boss" to get the first part and then multiplied it by 3^^^^3 to get g2, and then by it again to get g3 and so on to get g64 which was supposed to be Graham's number. I was just interested to see how it would be written out in numerical terms rather than algebraic (which may not be possible in full as it is more than the number of atoms in the universe) but to write it in its shorter version using the up arrow operation.
Thanks