### Graham's number

So having read all the comments on how this works, would I be right in saying that Graham's number is

"
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^
(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^(3^3^7625597484987)^

"?

I used the information on g1 supplied by "The epic boss" to get the first part and then multiplied it by 3^^^^3 to get g2, and then by it again to get g3 and so on to get g64 which was supposed to be Graham's number. I was just interested to see how it would be written out in numerical terms rather than algebraic (which may not be possible in full as it is more than the number of atoms in the universe) but to write it in its shorter version using the up arrow operation.

Thanks

• Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.