Add new comment

Permalink

Great explanation, but I'm somewhat puzzled by the fact that you never actually told us how Graham's number is defined. It's like there's a missing paragraph after you finish explaining the rapid recursive growth of up-arrows.

As I understand it, you start with 3^^^^3,

i.e. 3^^^(3^^^3)

i.e. 3^^(3^^(3^^3))

i.e. 3^^(3^3^3^3^3^3^3...) where "..." continues on for 3^3^3 iterations of powers of three

i.e. 3 raised to the third power a number of times equal to (3^3^3^3^3^3^3^3...) from above

i.e. already an unimaginably large number.

You start with the end result of that, then put that many *up arrows* in between two threes. That is to say that after we just got that huge number result that I can't concisely describe from just 3^^^^3, we look at the number 3^^^^^...3 that has that indescribable number of ^'s in it. That's "Step 1".

Then you do it again; take the number from Step 1, and put *that many* ^'s between two threes. Well beyond numbers anyone can really hope to imagine in any meaningfully representative way without deep mathematical understanding, this completes Step 2.

Graham's Number is the result when we reach Step 64, each of these steps involving putting a number of ^'s equal to the value of the previous step in between two threes.

Anyway, that's what I think an explanation might look like; I'm surprised something like this wasn't included. Otherwise, great explanation,

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.