Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
Or you could use a operation of my own design it’s kinda like a hyperoperation but I haven’t seen it officially listed anywhere.
Basically F(n) whatever n is equal to tells you the number of operations used and the level of the last operation you’ll use that step. Ex
F(0)=0
F(1)=1+1=2
F(2)=2•(2+2)
F(3)=3^(3•(3+3))
F(4)=4^^(4^(4•(4+4)))
F(5)= 5^^}(5^^(5^(5•(5+5)))){^^5
basically in that last one there are approximately 5^^85decillion arrows with 5s on either end it’s kinda hard to notate on the phone but it’s already starting to stack in the same way Graham’s Number (G64) does by increasing the actual ammount of arrows. However, it should surpass Graham’s number a good while before F(64) I would imagine and so F(G64) would be absolutely humongous. I built this operation trying to create a fun pattern that would at some point outpace the TREE(n) function but I’ll never be certain if it would work or just how long it would take to grow faster cause TREE(3) is already so massively huge the gap is a VERY difficult one to breach. Like imagine how small 100 is next to G64 and TREE(3) makes G64 look beyond tiny I don’t even fully understand how.
also fun fact I tried calculating this pattern in reverse as well and kinda kept breaking things giving me the following answers before things really stop making any sense at all but it’s still fun to break the rules sometimes just to see what would happen if you could lol
F(1)=0
F(2)~ Infinity?
F(3)~ (i)
F(4)= DEFINITELY UNDEFINED