Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
A basic introduction to the most powerful tools in science and enginnering.
As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
This number is somewhere between Googol (10^100) and Googolplex (10^(10^100)). Or more precisely between 10^(10^22) and 10^(10^23).
The number of all colors modern graphic cards can represent is: 256^3 = 16.7M
The number of pixels in a full HD image is 1920 × 1080 = 2M
Now to get to the number all full HD we have to put (256^3) to the power of 1920 × 1080.
(256^3)^(1,920*1,080) = 1.5... × 10^14,981,179 = 10^(10^7.17...)
Let's call this number HD.
As a comparison Googol, a very very large number, is equal to 10^100. So HD is much greater than Googol but smaller than Googolplex (10^(10^100)).
Now onto movies. Let's assume they are silent movies, with no audio. Let's assume they last 90 minutes and are are filmed in 48fps.
So we get 90 * 60 * 48 = 259,200 frames.
Since every one of the 259,200 frames can be any of the HD images the number of all HD movies is
(10^(10^7.17...))^(0.26 * 10^5) ~= 10^(3.83 * 10^12)
Now for every conceivable soundtrack. Sampled at 44.1kHz and with 16bit resolution per each of the stereo channel has 90 × 60 × 44100 samples so there's (2^32)^(90 * 60 * 44100) different soundtracks i.e. around:
~10^(10^9.36).
In total you can have roughly 10^(10^22) different movies.