Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
Consider a slightly more general situation, where the line segment S of the statue is being viewed from a point on a line V positioned generally (rather than a line perpendicular to the line segment as given in the problem). To determine the best vantage point on V from which to view S, note that if the circle determined by the end-points of the segment S and the current vantage point is such that the line V moves cuts the circle, then any point on the corresponding chord will have a larger viewing angle (follows readily using the constancy of angles at the circumference standing on a given chord, S in this case). Therefore, at the best viewing point, the circle must be tangent to V.
In the given case, where V is perpendicular to S (extended), the distance of the viewer to S extended can be shown by elementary means to be given by the formula above.