Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
Please explain to me how I'm missing the big picture, Luciano, but all I can see right now are pieces of logical legerdemain in most accounts of the Grandi series.
Take your pair of examples:
(1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + . . .
1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + . . .
I can't help noticing there are eight 1's in the first, but only seven in the second. So it's not just a matter of "grouping them differently". Adding and subtracting the 1's in accordance with the signs and brackets gives 0 and 1 respectively, but then it's hardly surprising that changing the task results in a different solution. To be consistent the second should be:
1) + (-1 +1) + (-1 + 1) + (-1 + 1) + (-1 + . . .
which does sum to 0.
Similarly with your other example in which you claim all you're doing is adding a zero at the start. I just can't "agree that we haven't changed the sum at all", because once again the quantity of 1's gets simultaneously but silently reduced from eight to seven. In other words, a 1 was sneaked away from the second, or if you like, smuggled into the first series. To be consistent the second should go:
0 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 . . .
Restoring that last "- 1" brings the sum back to 0.
I'm not trying to pour cold water on the fun and fruitfulness of manipulating the various items in the Grandi series. Elsewhere in Plus.Maths I offer it as a model for variable stars.