Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.
Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!
How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?
Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.
PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.
It is true that the number of ones shown(!) changes from 8 to seven, but the "..." at the end means that the sum goes on to infinity, i.e. there are infinity "1"s and infinity "1"s, regardless of how many are written down. You can continue adding in "1"s and "1"s by hand if you want, but your arm will get tired before infinity, so best to use the "..."!
The point here is that if you pair the terms "1" and "1" in different parts of the sum, you seem to get a different answer, which is only true because the sum goes to infinity. Going to infinity means that you can just keep adding paired terms that equal 0 in this way, so there seems to be a problem with infinity and making the sum make sense. It is certainly true that for any finite sum there is absolutely no problem with how we group the terms, the answer is the same no matter what. Hope this helps.