Add new comment

Consider the second equation, i.e. a^2 = ab. Subtracting ab from both sides gives you a^2 - ab = 0. If you look at the last equation (with the a's and b's in it) and substitute in 0 for the expression a^2 - ab as just obtained, on both sides, you have 2 x 0 = 1 x 0, i.e. 0 = 0 which is perfectly correct. The error is to cancel on both sides an expression that you've shown to be equal to zero, otherwise you can "prove" an infinite number of absurdities, e.g. if 1 x 0 = 100 x 0, then cancelling the zeros on each side would "prove" that 1 = 100, etc.

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.