Add new comment


I avoided using a computer - it's more fun as a logic puzzle. The trick is to start with 3-18-1-19-2, which has to be there somewhere. Then, name the points x (centre), y_i (degree 2 node on spokes), z_i (degree 3 node on spokes), w_i (degree 2 node on rim). Then create equations for the sum of the outer segments, the sum of all segments, and the sum of all nodes. These show x must be even, which means it can't be 1 or 3. So either 2 is at the centre, or 4 (since either 2-17-3 or 1-17-4 must appear). Then you need to take advantage of the fact that there are 10 odd numbers and the number of odd numbers in y_i and z_i must match. You also need to use the fact around any triangle there must be either 0 or 2 odd numbers in the middle of the edges. This ultimately leads to ruling out 2 at the centre, and eventually you find the result with 4 at the centre.

What I really want to know... is how did the question setter know there would be a solution?

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • The BloodCounts! project is gearing up towards one of the largest-scale applications yet of machine learning in medicine and healthcare.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.