Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
We talk to Stuart Johnston who uses mathematics to find out how noise pollution in the oceans impacts whales.
Generating electricity without the use of fossil fuels is not just an engineering and industrial challenge, it is also a huge mathematical challenge.
In this podcast author Coralie Colmez shares insights into her novel The irrational diary of Clara Valentine.
We talk to early career mathematicians who spent some of their summer holiday solving problems posed by industry — such as how to blend a perfect smoothie!
Don't like plant-based meat alternatives, but want to spare animals and the environment? There's hope on the horizon, aided by a good helping of maths.
You’re saying to observe a particle we’re bouncing particles off of that observed particle? I don’t think that’s the case. What exactly is bouncing off the particle being observed? How is it being directed toward the target particle? With the way they design these experiments, as far as I know, there should be no overt effect like that- certainly not the actual impact of matter as you’re describing. I don’t think anything is being expelled from the detection materials. Or if it were, that would be taken into account- so precise calculations would be made about how it should impact the results.
Basically, if something physical was being intentionally shot at the particles and that somehow was the way we detected them, then the scientists performing the research would do that math using specific measurements (including the mass of that projectile matter). I mean if there was anything being directed toward the electrons or whatever, they’d surely have an idea of what forces it would exert and the interaction it should have, etc…
Now you could say the electron being observed has some effect upon the detection unit itself (the “quantum observer”) because logically, in order to even register the electron’s presence/position, it must. But I believe that by all known science, there shouldn’t be any effect upon the particle being observed- other than the fact that it’s being observed. That’s kind of the whole point and is exactly what makes this discovery so mind-blowing…right? So I would assume that in these experiments, they’re controlling for those conditions (the observation device having any physical effect or exerting force upon the observed electron, and all possible variables). Do you disagree? I am genuinely curious about what you’re asserting!