Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
Generating electricity without the use of fossil fuels is not just an engineering and industrial challenge, it is also a huge mathematical challenge.
In this podcast author Coralie Colmez shares insights into her novel The irrational diary of Clara Valentine.
We talk to early career mathematicians who spent some of their summer holiday solving problems posed by industry — such as how to blend a perfect smoothie!
Don't like plant-based meat alternatives, but want to spare animals and the environment? There's hope on the horizon, aided by a good helping of maths.
Inverse problems are mathematical detective problems. They can help solve crimes, are used in medical imaging, and much more.
Nice one!! Similar to the three doors problem. If I am correct, the point is the implication: if the mean value is bigger than one -> switch envelop.
Before choosing any of the envelop, according to how the amount in the envelop is parametrised we can have mean value of 3/4x (envelop1 = x, envelop2 = 0.5 x) or 3/2x (envelop1 = x, envelop2 = 2 x). Using the same implication above, in the first case is not convenient to play the game (pessimistic parametrisation!), in the second it is convenient (optimistic parametrisation!).
This probably makes sense only if x is the quantity that we put in the game from our pocket, and in the game A we can receive x or 0.5x while in the game B we can receive x or 2x.
If, after "normalising", there are two quantities that we can win: 1 dollar or 2 dollars and the probability of winning one or the other is 0.5, then the mean value is always 3/2, either when we start the game choosing an envelop for the first time, or if we are asked to change it during the game, as no new information are acquired from one situation to the other.
So, I would not waste time changing envelop an infinite amount of time; instead I would play as many time as possible :-)