Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.
Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.
Find out why the formula we use to work out conditional probabilities is true!
- We talk about a play that explores the fascinating mathematical collaboration between the mathematicians GH Hardy and Srinivasa Ramanujan.
News stories have claimed they may have — but is this true?
This problem causes us to confuse prior (before information is learned) and posterior (after information is learned) probabilities. The prior probability that A has the lower amount is 1/2. The same posterior probability is:
Pr(A=x & B=2x)/[Pr(A=x & B=2x) + Pr(A=x & B=x/2)].
The posterior probability that A has the higher amount is:
Pr(A=x & B=x/2)/[Pr(A=x & B=2x) + Pr(A=x & B=x/2)].
These are the expressions you must use in the expectation under "What if you open envelope A?". In general, they can't both be 1/2 - your benefactor would have to possess an infinite supply of money.