I remember getting problems wrong all the time because I dident simplify in my shown work. When you solve for what is in the parentheses 6/2(1+2) you get 6/2(3) and then you have solved for what's in the parentheses already. That's done, you did you P in PEMDAS. And so 2(3) just becomes 2×3 at that point cause the parentheses have been solved. This simplifying of equations was to help NOT get this kind of confusion among students. So in reality 6/2(3) is = to 6/2×3... by insisting the parentheses must stay after the inside has been solved and then insisting that you have to do that multiplication is completely bonkers to me. The 2 in front of the parentheses is not part of the set (1+2). There's a whole thing called Set Theory that a guy named Georg Cantor came up with almost 150 years ago that I believe explains this principle.

I remember getting problems wrong all the time because I dident simplify in my shown work. When you solve for what is in the parentheses 6/2(1+2) you get 6/2(3) and then you have solved for what's in the parentheses already. That's done, you did you P in PEMDAS. And so 2(3) just becomes 2×3 at that point cause the parentheses have been solved. This simplifying of equations was to help NOT get this kind of confusion among students. So in reality 6/2(3) is = to 6/2×3... by insisting the parentheses must stay after the inside has been solved and then insisting that you have to do that multiplication is completely bonkers to me. The 2 in front of the parentheses is not part of the set (1+2). There's a whole thing called Set Theory that a guy named Georg Cantor came up with almost 150 years ago that I believe explains this principle.