Finding the minimum deviation angle

Share this page

Finding the minimum deviation angle


From the graph of Df(α) we know that there is one minimum. We'll find it by setting the derivative of Df(α) equal to 0. We have Df(α)=180+2α4β, where $$\beta=\beta(\alpha)=arcsin{\frac{\sin{\alpha}}{n_{f,w}}.Tomakethingslooksimplerwellwrite$n$for$nf,w.$NowD_f^\prime(\alpha)=2-4\beta^\prime(\alpha).Thederivativeofthefunction$f(x)=arcsin(x)$isf^\prime(x)=\frac{1}{\sqrt{1-x^2}}.Usingthechainrulegives\beta^\prime(\alpha)=\frac{\cos{\alpha}}{n\sqrt{1-\frac{\sin^2{\alpha}}{n^2}}}=\frac{\cos{\alpha}}{\sqrt{n^2-\sin^2{\alpha}}}.ThusD_f^\prime(\alpha)=2-\frac{4\cos{\alpha}}{\sqrt{n^2-\sin^2{\alpha}}}.Setting$Df(α)=0$gives2-\frac{4\cos{\alpha}}{\sqrt{n^2-\sin^2{\alpha}}}=0.Notingthat$sin2α=1cos2α$andrearranginggives\cos^2{\alpha}=\frac{n^2-1}{3}.Thus,D_f^\prime(\alpha)=0forαm=arccosn213.$

Back to main article