From the graph of we know that there is one minimum. We'll find it by setting the derivative of equal to 0. We have
where
$$\beta=\beta(\alpha)=arcsin{\frac{\sin{\alpha}}{n_{f,w}}.D_f^\prime(\alpha)=2-4\beta^\prime(\alpha).f^\prime(x)=\frac{1}{\sqrt{1-x^2}}.\beta^\prime(\alpha)=\frac{\cos{\alpha}}{n\sqrt{1-\frac{\sin^2{\alpha}}{n^2}}}=\frac{\cos{\alpha}}{\sqrt{n^2-\sin^2{\alpha}}}.D_f^\prime(\alpha)=2-\frac{4\cos{\alpha}}{\sqrt{n^2-\sin^2{\alpha}}}.2-\frac{4\cos{\alpha}}{\sqrt{n^2-\sin^2{\alpha}}}=0.\cos^2{\alpha}=\frac{n^2-1}{3}.D_f^\prime(\alpha)=0$
Back to main article