Add new comment

Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
Generating electricity without the use of fossil fuels is not just an engineering and industrial challenge, it is also a huge mathematical challenge.
In this podcast author Coralie Colmez shares insights into her novel The irrational diary of Clara Valentine.
We talk to early career mathematicians who spent some of their summer holiday solving problems posed by industry — such as how to blend a perfect smoothie!
Don't like plantbased meat alternatives, but want to spare animals and the environment? There's hope on the horizon, aided by a good helping of maths.
Inverse problems are mathematical detective problems. They can help solve crimes, are used in medical imaging, and much more.
So, here's my take on both forms of the paradox  Zeno's original, of Achilles and the Tortoise (converging on a distance), and Thomson's variation, the Lamp (converging on a time). In both of them, assuming that the runner / lampswitcher in question CAN infinitely continue to cover ever smaller increments of distance / time (which, as the article points out, modern physics dictates that they CAN'T), they will never reach the point of convergence.
So, using the example figures from the article: assuming that they both continue along the racetrack infinitely, neither Achilles nor the Tortoise will ever reach the 11.111111...m mark. I.e. the real point, in my opinion  apart from Zeno's conclusion that Achilles can never overtake the Tortoise  the real point is that neither of them will even finish the race (or to be more precise, assuming that the race is 100m long, neither of them will finish more than 11.11111...% of the race). They're "infinitely recursing" in their movement, as they approach but never reach the point where one would be a tied winner with the other.
Similarly: assuming that someone continues switching it infinitely, the "state of the lamp" will never reach the 2min mark. I.e. apart from Thomson's conclusion that we can't say whether the lamp will be on or off after 2 mins, the real point is that it's impossible for "the lamp as something that's on or off" to even EXIST when time is gte 2 mins. The lamp will continue "infinitely recursing" in its temporal state, as it approaches but never reaches the point where that dude with a tired index finger could stop and take a break.
In conclusion: Zeno's Paradox / Thomson's Lamp are solvable, if we assume that the universe doesn't exist. :P