Polar power

Cartesian coordinates.
Most of us are familiar with the Cartesian coordinate system which assigns to each point in the plane two coordinates
. To find
you start at the point
and walk a distance
along the horizontal axis and a distance
along the vertical axis (see image on the right).
But there’s another way of locating points on the plane, which is very nice too. To each point assign the pair of numbers
, where
is the distance from
to
along a straight radial line, and
is the angle formed by that radial line and the positive
-axis, measured anti-clockwise from the
-axis to the line. These new coordinates are called polar coordinates, because you treat the crossing point of the axes as a pole from which everything radiates out.
In the image below, click on the point and drag it around to see how its polar coordinates change (degrees are measured in radians).
How do you express simple shapes in polar coordinates? As you can see from the interactivity above, a ray that starts at the point is given by a particular value of the angle
For example, the positive
-axis is described by the equation
![]() |
and the ray that halves the angle between the positive and
-axes is given by the equation
![]() |
Generally, the equation
![]() |
describes the ray that starts at and makes an angle
with the positive
-axis.
What about circles? A circle centred on of radius
consists of all points that lie at distance
from
. So we can describe the circle in polar coordinates using the equation
![]() |
This expression is a lot simpler than the equation of a circle in Cartesian coordinates, which is
![]() |
The polar equations describing lines that don't pass through the point (0,0) and circles that are not centred on (0,0) are more complicated than their Cartesian versions (see here). But there are shapes whose description using polar coordinates are a lot simpler than their Cartesian counterparts. Here are three of our favourite examples.
Archimedean spirals
Let’s look at all the points whose polar coordinates satisfy the equation
![]() |
in other words, we are looking at points with polar coordinates Where are they?
The animation below shows the ray corresponding to the angle as
ranges from 0 to
. The point
marked on the ray is the one with coordinates
As
increases the point moves further away from
(Click on the play icon in the bottom left hand corner or use the slider to vary
.)
We have the beginning of a spiral!
But why stop at ? You could keep turning the radial line by more than one full turn, through one-and-a-half turns (
), two turns (
), and so on, round and round. Then, as
goes through another full turn from
to
, the distance to
of the point
with coordinates
increases further, from
to
. Letting
run from
to
gives us another full turn with points moving out even further. The animation below shows the spiral you get from letting
vary from 0 to
Letting increase all the way to infinity gives a spiral that loops around
an infinite number of times:
This beautiful shape is called an Archimedean spiral, named after the great Greek mathematician Archimedes who discovered it in the third century BC. As you can see from the picture, the loops of the spiral are evenly spaced: if you draw a radial line from , then the distance between two successive intersection points with the spiral is always
.
There are other Archimedean spirals too, all characterised by the fact that a radial line intersects the spiral at equal intervals. They can be characterised by the equation
![]() |
for a positive real number. By playing around with different values for
you can convince yourself that
controls how tightly the spiral is wound up, and therefore the distance between successive intersection points along a radial line. For a psychedelic experience (or to give yourself a headache) try the animation below with shows Archimedean spirals with
varying from 5 down to 0.
If you prefer a physical interpretation, an Archimedean spiral is what you get when you trace the path of a point that moves out from the centre at constant speed along a line that rotates with constant angular velocity.
Logarithmic spirals
Now let’s look at all points whose polar coordinates satisfy the equation
![]() |
where is the base of the natural logarithm,
.
When , we get
![]() |
So our shape contains the point with polar coordinates (whose Cartesian coordinates happen to also be
). The animation below shows the radial line corresponding to the angle
as it varies from
to
The point
with coordinates
is marked too. Again we see the beginning of a spiral but this time a different one.
Again we can let range beyond
, through
,
and so on, giving a spiral that winds around any number of times. This time, however, the loops of the spiral are not evenly spaced.
This is an example of a logarithmic spiral. It carries this name because instead of writing
![]() |
you could write
![]() |
where is the natural logarithm to base
.
(There is also a more general form of the logarithmic spiral, given by the equation
where and
are positive real constants. )
But there is another trick we can play here: we can allow the angle to become negative! To find a point whose second polar coordinate is negative you measure the angle from the positive
-axis in the other direction: clockwise. For example, a point with polar coordinates
lies on the negative part of the
-axis.
What does this mean for our logarithmic spiral? As moves from
towards negative infinity, the radial line given by
turns clockwise through one, two, three, and any number of turns. The points
with coordinates
![]() |
lie on that radial line. But now as decreases toward negative infinity, the points move inward, towards
This is because
![]() |
so if is very negative, then
is a very large number, so
is positive and very close to 0.
The animation below shows the point as
varies from
down to
Letting range all the way from negative to positive infinity creates a spiral that is infinite in both directions, it has no beginning and no end.

A full logarithmic spiral.
But hang on a second. This picture looks pretty much the same as the one you get from the animation above it, even though the x and y-axes here cover a much smaller range, as you can see from the labels! This illustrates a very interesting property of logarithmic spirals. If you zoom in or out of a picture of a logarithmic spiral, the picture you see looks exactly as it did before you zoomed. That feature is called self-similarity. It may be the reason why logarithmic spirals are so common in nature. You can see them in the turns of a snail shell, in many plants and even in the arms of spiral galaxies. The 17th century mathematician Jacob Bernoulli was so fascinated by this beautiful shape, he called it the "spiral mirabilis" (miraculous spiral) and asked for it to be engraved on his tomb stone, along with the sentence "Although changed, I shall arise the same." Unfortunately the engravers got it wrong and he ended up with an Archimedean spiral on his grave instead.
Polar roses
For our final shape, or rather family of shapes, let’s start by considering the equation
![]() |
(The || symbol stands for the absolute value, so we are only considering positive numbers for .)
To see what is going on here, let’s first recall the shape of the sine function, plotting on the horizontal axis against
on the vertical one:

Applying the absolute value means that the parts of the wave that are below the horizontal axis (for which is negative) are flipped to lie above it:

You can see that as moves from
to
, the value of
moves from 0 to a maximum of 1 (at
) and back down to 0.
Now let’s go back to our polar coordinates. As ranges from
to
, the distance to
of our points
![]() |
Now let’s up the stakes and consider the equation
![]() |
The new factor of 2 means that the two loops that previously appeared for ranging from
to
now appear for
only ranging only from
to
. This means that both loops occur in the upper half plane and also become a little squashed. As
moves on from
to
, the value of
ranges from
to
Since the sine function is periodic (it has the same value for
as it does for
) a mirror image of our pair of loops now also appears in the lower half plane:
We have a flower with four petals!
What happens if we consider the equation
![]() |
where is any positive whole number? You’ve guessed it! You get a flower with
petals — below we show you the results for
and
.. It’s amazing what polar coordinates can do!
About the author
Marianne Freiberger is Editor of Plus.