Knowledge as shown by science, is measurement. Measurement is a mapping of the world onto the number line - a sequence of numbers. Our brains have evolved to make sense of scattering events of photons - arranging these events into sequences, so as to plan actions that help in survival and reproduction. Sequences therefore is knowledge. To arrange these huge numbers of sequences and make predictions, our brains have evolved concepts like space and time. Space and time are not physical entities, but useful concepts. When physicists make a space-time description of the universe, they forget that space and time are merely concepts. If you get rid of the notion of space and time and merely look at physics as a description of sequences of scattering events that leads to predictability - a non-spacetime physics, then the connection between mathematics i.e., logical conclusions of a prototype sequence, and physics becomes apparent. And perhaps lead to describing physical laws in simpler mathematics.

Knowledge as shown by science, is measurement. Measurement is a mapping of the world onto the number line - a sequence of numbers. Our brains have evolved to make sense of scattering events of photons - arranging these events into sequences, so as to plan actions that help in survival and reproduction. Sequences therefore is knowledge. To arrange these huge numbers of sequences and make predictions, our brains have evolved concepts like space and time. Space and time are not physical entities, but useful concepts. When physicists make a space-time description of the universe, they forget that space and time are merely concepts. If you get rid of the notion of space and time and merely look at physics as a description of sequences of scattering events that leads to predictability - a non-spacetime physics, then the connection between mathematics i.e., logical conclusions of a prototype sequence, and physics becomes apparent. And perhaps lead to describing physical laws in simpler mathematics.