Add new comment

Maths in a minute: Equal temperatures

At every given point in time there are two points on the equator of the Earth that have the same temperature.

How do we know this? Well, here’s a proof. Let’s look at the equatorial plane which slices through the Earth at the equator. The equator is a circle which lies in that plane, and we can choose a coordinate system on the plane so that the point $(0,0)$ lies at the centre of the equator. For each point $x$ on the equatorial circle there is a point $-x$ which lies diametrically opposite $x$.


Points x and -x.

Now each point $x$ on the equator comes with a temperature $t(x)$. We can assume that the function $t$, which allocates a temperature to each point, is continuous. That’s because temperature doesn’t suddenly jump up or down as you move around on the Earth.

Now consider the function

  \[ f(x) = t(x)-t(-x). \]    

It is also continuous.

If this function is equal to $0$ for some point $x$, then we are done because if

  \[ f(x) = t(x)-t(-x)=0 \]    


  \[ t(x)= t(-x), \]    

so the temperature at $x$ is the same as the temperature at $-x$.

If $f(x)$ isn’t equal to $0$ anywhere, then let’s assume (without loss of generality) that there is a point $x$ at which $f(x)>0,$ so

  \[ f(x) = t(x)-t(-x)>0. \]    

This implies that

  \[ f(-x) = t(-x)-t(x)=-f(x)<0. \]    

There is a result, called the intermediate value theorem, which says that if a continuous function is greater than $0$ at some point of its domain and less than $0$ at another, then it must equal $0$ at some point in between the two.

Intermediate value theorem

Illustration of the intermediate value theorem. If t(x)>0 and t(y)<0 and t is continuous, then there is a point z between x and y such that t(z)=0.

Thus, since $f(-x)<0$ and $f(x)>0$, there must be a point $y$ on the circle such that $f(y)=0$. So

  \[ f(y) = t(y)-t(-y)=0 \]    

which means that

  \[ t(y)=t(-y). \]    

So the temperature at the point $y$ is the same as the temperature at the point $-y.$

The result actually holds for any circle on the Earth, not just the equator. In fact, the result is the one-dimensional case of the Borsuk-Ulam theorem, which says that for any continuous function $t$ from the circle to the real numbers there is a point $x$ such that $t(x)=t(-x).$

The more general version of the Borsuk-Ulam theorem says that for any continuous function $t$ from the $n$-sphere to the set of $n$-tuples of real numbers there is a point $x$ such that $t(x)=t(-x)$.

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • The BloodCounts! project is gearing up towards one of the largest-scale applications yet of machine learning in medicine and healthcare.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.