Add new comment
-
Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.
The COVID-19 pandemic has amplified the differences between us. Understanding these inequalities is crucial for this and future pandemics.
Now it's the turn of mathematicians to help to improve the communities of the future.
There have been accusations that the modelling projecting the course of the pandemic was too pessimistic. Are they justified?
We all know what turbulence is, but nobody understands it.
Find out about the beautifully intuitive concept that lies at the heart of calculus.
The claim about the golden ratio in music actually refers to form, not to frequency (though that doesn't stop people from making music with tunings related to the golden ratio, but anyway). The claim is that if you have some work with an AB form, the A and B sections will ideally have durations in the golden ratio, etc., because the golden ratio provides the best balance between durations or something. I think it's claimed that this proportion can be specifically found in the music of Mozart.
While we're at it, 2^(1/12) isn't particularly special either; it's mostly a coincidence and a compromise. "Ideal" frequency ratios are in small whole numbers, but these come with some mathematical challenges (like the fact that (3/2)^4 ≠ 5) and it was generally decided to settle on a compromise system with 12 equal steps to the octave rather than unequal steps with "nicer" numbers or, say, a different number of equal steps (like 19 or 31).