- list_by_author
- Articles by Mark Wainwright

The idea is this. To start with, you will choose an envelope at random, say by tossing a coin, and look at its contents, which is a cheque for some number - say n. (By randomising like this, you can be sure I haven't subconsciously induced you to prefer one envelope or the other.) You want to make sure that the bigger the number is, the more likely you are to keep it, in other words, the less likely you are to swap.

**Mark Wainwright**meets the pair and finds out how they did it.

There are many sorts of games played in a "bunco booth", where a trickster or sleight-of-hand expert tries to relieve you of your money by getting you to place bets - on which cup the ball is under, for instance, or where the queen of spades is. Lots of these games can be analysed using probability theory, and it soon becomes obvious that the games are tipped heavily in favour of the trickster!

This is a game played between a team of 3 people (Ann, Bob and Chris, say), and a TV game show host. The team enters the room, and the host places a hat on each of their heads. Each hat is either red or blue at random (the host tosses a coin for each team-member to decide which colour of hat to give them). The players can see each others' hats, but no-one can see their own hat.