In the previous article we introduced Schrödinger's equation and its solution, the wave function, which contains all the information there is to know about a quantum system. Now it's time to see the equation in action, using a very simple physical system as an example. We'll also look at another weird phenomenon called quantum tunneling. (If you'd like to skip the maths you can go straight to the third article in this series which explores the interpretation of the wave function.)
The particle in a box.
Wave-particle duality is a central concept in quantum mechanics.
The fact that the energy spectrum is discrete, ie that not all energies are permitted, and in particular that zero energy is not permitted, are results you don't get out of classical mechanics — in fact, they fly in the face of conventional wisdom, which holds that quantities such as energy should vary continuously: "nature does not make jumps" according to Gottfried Leibniz. Classical physics also tells us that the lowest energy state of a system (also called the ground state or the vacuum) should have zero energy. But these strange quantum results tally with the experimental observations of quantum systems, for example the discrete energy spectrum of the hydrogen atom.
The value of the constant B can be found by normalising the wave function. Recall that $$|\Psi(x)|^2 = |\psi(x)^2 e^{-(2 \pi i E/h)t}| = |\psi(x)^2||e^{-(2 \pi i E/h)t}|.$$
Now $e^{-(2 \pi i E/h)t}$ is a complex number, which can also be written as $$e^{-(2 \pi i E/h)t} = \cos{\left( -(2 \pi i E/h)t\right)} + i \sin{\left( -(2 \pi i E/h)t\right)}.$$ The modulus $|e^{-(2 \pi i E/h)t}|$ of this complex number is therefore $$\cos^2{\left( -(2 \pi i E/h)t\right)} + \sin^2{\left( -(2 \pi i E/h)t\right)}=1,$$ by the familiar trigonometric identity. Therefore we have $$|\Psi(x)|^2 = |\psi(x)^2 e^{-(2 \pi i E/h)t}| = |\psi(x)^2||e^{-(2 \pi i E/h)t}| = |\psi(x)^2|.$$ Now recall that $|\Psi(x)|^2$ is the probability density function for finding the particle at location $x$ at time $t.$ In other words, the probability that the particle is somewhere in the box is given by $$\int^L_0 |\Psi(x)|^2dx = \int^L_0 |\psi(x)|^2 dx.$$ Since we know for sure that the particle is somewhere in the box we have $$\int^L_0 |\Psi(x)|^2dx = \int^L_0 |\psi(x)|^2 dx = 1. $$ Substituting our expression for $\psi(x)$ from equation (3) we have $$\int^L_0{B^2 \sin^2{\left(\sqrt{\frac{8 \pi^2 mE}{h^2} }x\right)}dx}=1.$$ Using the fact that $$\int \sin^2{(ax)} dx = -\frac{1}{2a}\sin{(ax)}\cos{(ax)}+\frac{x}{2},$$ we can work out that $$B=\sqrt{\frac{2}{L.}}$$
The particle in a box: the position of the particle is shown on the x-axis and the energy on the y-axis. The permitted energy levels for the first four quantum numbers are shown as horizontal dotted lines. The wavefunctions are shown superimposed on the diagram at the corresponding energies. Image: Papa November.
Since $|\psi(x)|^2=|\Psi(x)|^2$ is the probability density of finding the particle at the point $x$, this means that there are places in the box where the particle can never be found! Thus we've seen how Schrödinger's equation produces some very weird results that contradict our classical intuition. So why do we not see things like the discrete energy levels in macroscopic objects like billiard balls? The lowest permitted energy occurs for the quantum number $n=1$ and $$E_1 = \frac{h^2}{8mL^2}.$$ Planck's constant $h$ is very small, $h=6.626068 \times 10^{-34} m^2kg/s.$ So for a large object, $m$ and $L$ will be comparatively huge. This means that $E_1$ will be so incredibly small that an object with energy $E_1$ becomes indistinguishable from one at rest. This is why in the macroscopic world a zero energy level does appear to be possible. Now let's compute the difference between two adjacent energy levels $E_n$ and $E_{n+1}$ for a quantum number $n$: $$E_{n+1}-E_n = \frac{(n+1)^2 h^2}{8mL^2} - \frac{n^2 h^2}{8mL^2} = \frac{h^2((n+1)^2-n^2)}{8mL^2} = \frac{h^2(2n+1)}{8mL^2}.$$ As the mass $m$ and the size $L$ of the box get large, this difference tends to zero. So for large objects the permitted energy levels are so close together that it's impossible to distinguish them from the energy levels that are not permitted — the energy level appears to vary continuously.
Quantum tunneling
Quantum tunneling: The vertical axis shows the potential energy of the particle, which is equal to V0 for x greater than 0 and less than L and zero elsewhere.
Generally the term quantum tunneling refers to any situation in which a particle overcomes a potential barrier that it should not be able to overcome according to classical physics. Quantum tunneling does occur in nature, for example in when uranium decays to thorium in a form of radioactive decay known as alpha decay. Here the atomic nucleus emits an alpha particle (which consists of two protons and two neutrons and is structurally identical to a helium nucleus). According to classical physics, the process of emitting the particle should be impossible, as it requires more energy than the atom has available. It's through quantum tunneling that the atom accomplishes the feat.
The big question raised by all this mathematics is what Schrödinger's equation tells us about physical reality. How should we interpret its solution, the wave function? This is what we'll explore in the third article.
Read the final article Schrödinger's equation, what does it mean?
About the author
Marianne Freiberger is Editor of Plus. She would like to thank Jeremy Butterfield, a philosopher of physics, Nazim Bouatta, a Postdoctoral Fellow in Foundations of Physics, and Tony Short, a Royal Society Research Fellow in Foundations of Quantum Physics, all at the University of Cambridge, for their help in writing these articles.
Comments
Wonderful site and content
Marianne,
This is a wonderful site and content. All students of math and physics should read this kind of material.
Many thanks! Keep up the good work!!
Raj
Schrödinger's equation, what does it mean?
Finally an article meant to teach.....Thank You Marianne Freiberger
Too many articles just go through the derivation of Schrodinger's Equation.
Jack H
Planck's constant
Question for Marianne:
Is it possible that h/2 is the fundamental quantum size? If we define a new Planck's constant (call it hs) such that hs = h/2, and plug that into the Schroedinger Equation, does that change the usefulness of the equation (or add any other complications to any aspect of physical laws or quantum mechanics)?
I have a reason for asking that, which we can discuss if your answer is no.
Planck's constant
Interesting thought, perhaps even 1/4 ? I am interested in discussing this.
Question about equation 5
Thx for a very fine article. Very clever math! But I've been stumped by magicians who were as clever. The particle must know the location of L before he/she/it can leave x=0, or he/she/or it will not know when to pop back into reality. How does he/she/or it manage that? What was Schrodenger smoking? :>)
Thomas