Can you imagine objects that you can't measure? Not ones that don't exist, but real things that have no length or area or volume? It might sound weird, but they're out there. Andrew Davies gives us an introduction to Measure Theory.
In the late 1940s, American painter Jackson Pollock dripped paint from a can on to vast canvases rolled out across the floor of his barn. Richard P. Taylor explains that Pollock's patterns are really fractals - the fingerprint of Nature.
Almost everyone reading this article has no doubt encountered pictures from the Mandelbrot Set. Their appeal is not limited to the mathematician, and their breathtaking beauty has found its way onto posters, T-shirts and computers everywhere. Yet what is a fractal?

Combining the computational powers of modern digital computers with the complex beauty of mathematical fractals has produced some entrancing artwork during the past two decades. Intriguingly, recent research at the University of New South Wales, Australia, has suggested that some works by the American artist Jackson Pollock also reflect a fractal structure.

Images based on Lyapunov Exponent fractals are very striking. Andy Burbanks explains what Lyapunov Exponents are, what the much misunderstood phenomenon of chaos really is, and how you can iterate functions to produce marvellous images of chaos from simple mathematics.
The term fractal, introduced in the mid 1970's by Benoit Mandelbrot, is now commonly used to describe this family of non-differentiable functions that are infinite in length. Find out more about their origins and history.
Computer games and cinema special effects owe much of their realism to the study of fractals. Martin Turner takes you on a journey from the motion of a microscopic particle to the creation of imaginary moonscapes.