Author: Marianne Freiberger

The Plus team's vehicle of choice is the bicycle, so we're particularly pleased about an announcement that hit the news this month: a clever car mirror that eliminates the dreaded blind spot has been given a patent in the US. The mirror was designed by the mathematician Andrew Hicks, of Drexel University, after years of puzzling over the problem.

Why are we so clever? In evolutionary terms this isn't obvious: evolution tends to favour cheap solutions and the human brain is expensive. It consumes about 20% of our body's energy budget yet it only makes up 2% of our body mass. So why did it make evolutionary sense for us humans to develop powerful brains? Game theory provides a possible answer.

The holy grail for 21st century physics is to produce a unified theory of everything that can describe the world at every level, from the tiniest particles to the largest galaxies. Currently the strongest contender for such a theory is something called M-theory. So what is this supposed mother of all theories all about?

This year's Abel Prize goes to Endre Szemerédi for his "fundamental contributions to discrete mathematics and theoretical computer science."
Data, data, data — 21st century life provides tons of it. It's paradise for researchers, or at least it would be if we knew how to make sense of it all. This year's AAAS annual meeting in Vancouver devoted plenty of time to the question of how to understand large amounts of data. And there's one method we particularly liked. It's based on the kind of idea that gave us the London tube map.

Africa isn't a continent that's famous for cutting edge research. But at the University of Stellenbosch, 50km East of Cape Town, South Africa, Kiran Dellimore and his team are engineering medical equipment that will save the lives of people all over the world. Latest projects include replacement heart valves made from kangaroo tissue and equipment to help resuscitate people in emergencies.

How many people died? It's one of the first questions asked in a war or violent conflict, but it's one of the hardest to answer. In the chaos of war many deaths go unrecorded and all sides have an interest in distorting the figures. The best we can do is come up with estimates, but the trouble is that different statistical methods for doing this can produce vastly different results . So how do we know how different methods compare?

Plants are amazingly good at something that is still flummoxing us humans in our quest for sustainable energy sources: turning sunlight into energy in an efficient way. Around 100 bilions tons of biomass are produced annually through photosynthesis. The question is, how exacty do plants do it?

Some of the things I overheard at Stephen Hawking's 70th birthday conference did make me wonder whether I hadn't got the wrong building and stumbled in on a sci-fi convention. "The state of the multiverse". "The Universe is simple but strange". "The future for intelligent life is potentially infinite". And — excuse me — "the Big Bang was just the decay of our parent vacuum"?!

A traditional view of science holds that every system — including ourselves — is no more than the sum of its parts. To understand it, all you have to do is take it apart and see what's happening to the smallest constituents. But the mathematician and cosmologist George Ellis disagrees. He believes that complexity can arise from simple components and physical effects can have non-physical causes, opening a door for our free will to make a difference in a physical world.