Reviews

If "How to solve it" really contained an infallible recipe for doing so, mathematics would not be mathematics and the world would be quite different. Of course it doesn't - it can't - but it can - and does - contain a great deal of food for thought for the budding mathematician. Like many other Central Europeans, Pólya relocated to the US at the beginning of the Second World War. There he worked at Stanford University and wrote this immensely successful book (more than a million copies sold) in 1945.
This book is built on an extended metaphor, which casts equations as the poetry of science. According to the editor Graham Farmelo (head of Science Communication at the Science Museum in London), great equations and great poems are alike in a number of ways. Both suffer if anything is added, changed, or taken away, both are a rich stimulus to the prepared imagination, and both draw much of their power from their conciseness.
As Tony Gardiner says in at the beginning of this book, "the last ten years or so has seen a remarkable blossoming of public interest in mathematics [but] most of the books produced have been for adults, rather than for students. Moreover, most are in prose format - for those who want to 'read about' mathematics, rather than those who want to get their hands dirty solving problems."
If you watch a steam engine, you may not know how it works but you can soon get a fairly good idea of its behaviour, and you can predict its future behaviour accurately. Even though you don't understand its workings, you can see it's a pretty simple machine, so you can trust it to behave in a simple way: you have confidence in your predictions based on a short sample of its behaviour.
ver the last hundred years, human understanding of the nature of the universe has expanded at a mind-boggling rate; and over the last forty, Kip Thorne, along with Stephen Hawking, who wrote the foreword to this book, have been among the group of people shining most light into the darkness. But, aware that his research is carried out on behalf of us all, Thorne has not neglected the task of explaining its results to the rest of us.
Research on the Universe leads to many such startling conclusions and this book attempts to describe some of the surprising phenomena which occupy astronomers and cosmologists. Our Universe, Martin Rees' laboratory, allows its natural laws to be cleverly interpreted at arm's length, by observing the 'extreme' physics which we could never replicate in a laboratory. The biggest questions have an almost philosophical tenor.
This book attempts to take a firm grip on a corner of the slippery issue of consciousness. It is directly related to Roger Penrose's earlier, hugely successful work, The Emperor's New Mind. Although much space is devoted to painstaking replies to the criticisms made of the earlier book, this is not simply a sequel. It contains a number of new ideas, some of which are still being actively debated seven years after the book was first published.
What is the nature of the universe that we live in? This is a question that has exercised philosophers and scientists for as long as people have been able to think. Almost everyone has asked it at one time or another, in one form or another. It is hard to imagine a more fundamental question.