differentiation

What shape of cone maximises the ice cream to wafer ratio?

Getting the most from the air
Calculus is a collection of tools, such as differentiation and integration, for solving problems in mathematics which involve "rates of change" and "areas". In the second of two articles aimed specially at students meeting calculus for the first time, Chris Sangwin tells us how to move on from first principles to differentiation as we know and love it!
Calculus is a collection of tools, such as differentiation and integration, for solving problems in mathematics which involve "rates of change" and "areas". In the first of two articles aimed specially at students meeting calculus for the first time, Chris Sangwin tells us about these tools - without doubt, the some of the most important in all of mathematics.
The term fractal, introduced in the mid 1970's by Benoit Mandelbrot, is now commonly used to describe this family of non-differentiable functions that are infinite in length. Find out more about their origins and history.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.