An almighty coincidence

Share this page
December 2007

First note that there are 1010 possible combinations of the numbers from 1 to 10: there are 10 choices for the number that goes in the first position, 10 choices for the number that goes in the second position and so on. Since each digit is equally likely, each of these combinations is equally likely, so the chance of picking an individual combination is 1/1010.

How many combinations are there that have each digit appearing exactly once? Now there are 10 choices for the number that goes in the first position, 9 choices for the number that goes in the second position, since we can't pick the first one again, 8 choices for the third number, and so on. So there are 10 × 9 × ... × 2 × 1 = 10! different combinations in this case.

Therefore, the chance of picking a combination with every number appearing exactly once out of all the possible combinations is 10!/1010.

Return to main article
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • As COP28, the 2023 United Nations Climate Change Conference, kicks off we look at how maths can help understand the climate crisis.

  • How do you create dramatic film out of mathematics? We find out with writer and director Timothy Lanzone.

  • Mathematics plays a central role in understanding how infectious diseases spread. This collection of articles looks at some basic concepts in epidemiology to help you understand this fascinating and important field, and set you up for further study.

  • Find out why the formula we use to work out conditional probabilities is true!

  • We talk about a play that explores the fascinating mathematical collaboration between the mathematicians GH Hardy and Srinivasa Ramanujan.