Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Maths in a minute: Differential equations

    6 May, 2020
    Ferrari

    This Ferrari 330 P4 probably does more than 70mph. Image: Marti B, CC BY-SA 2.0.

    Imagine you are driving down the motorway at a steady speed of 70mph. If you arrive at your destination in 2 hours, then you'll easily work out that you have travelled a distance of 140 miles. What you have done here, without noticing, is solve a differential equation. Speed is the rate of change of distance over time. From observing this rate of change you have worked out the value of the quantity that has been changing, namely distance, at the end of your journey.

    This, put simply, is what differential equations are about. When we look at the world around us, often what we see, and what we can measure, is change: how some quantity $y$ changes over time, or space, or with respect to some other quantity $x$. We can describe this change by an equation: that's what is called an ordinary differential equation. In our car example, $y$ was distance and $x$ was time. Writing $\frac{dy}{dx}$ for the rate of change, the corresponding ordinary differential equation is $$\frac{dy}{dx}=70.$$ Solving the differential equation amounts to working out, from the rate of change of $y$ with respect to $x$, the value of $y$ for every value of $x$. In the car example the solution to the ordinary differential equation is $$y(x) = 70x.$$ For $x=2$, so after a travelling time 2 hours, the distance travelled is $$y(2)=70 \times 2=140,$$ as we said before.  

    Now speed is the rate of change of distance over time: it is what is called the first derivative of distance with respect to time. Acceleration is the rate of change of speed over time, which makes it the second derivative of distance with respect to time. You can continue like this. The rate of change of acceleration over time would be the third derivative of distance with respect to time, and so on, giving you a whole sequence of higher order derivatives. An ordinary differential equation is an equation involving a quantity $y$ and its higher order derivatives with respect to a quantity $x$.  

    But we are not quite done yet. You could also have equations relating the rates of change of a quantity $y$ with respect to several other quantities. For example, if you are considering how a quantity $y$ changes as you move around in space, you might need to consider its rate of change with respect to all three directions of space. In terms of vertigo, for example, the rate of change will be very different if you go up than if you move left or right or forward or backward. When this happens you need to use partial derivatives of $y$ with respect to any of the quantities it depends on. An equation involving these partial derivatives (of all orders) is called a partial differential equation.

    There are countless uses for differential equations in all areas of maths and science. For a wide range of examples, see this collection of Plus articles. For more formal definitions of differential equations, have a look at Wikipedia.


    This article now forms part of our collaboration with the Isaac Newton Institute for Mathematical Sciences (INI) – you can find all the content from our collaboration here. The INI is an international research centre and our neighbour here on the University of Cambridge's maths campus. It attracts leading mathematical scientists from all over the world, and is open to all. Visit www.newton.ac.uk to find out more.

    INI logo

     

    • Log in or register to post comments

    Read more about...

    Maths in a minute
    differential equation
    partial differential equation
    INI
    calculus

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms