Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Maths in a minute: How does laser interferometry work?

      18 August, 2017

      Laser interferometry is used by gravitational wave detectors like LIGO. The general idea behind it is relatively simple.

      Gravitational waves stretch and squeeze space. This means that some distances become longer and some shorter. A laser interferometer measures the resulting distance by splitting a laser beam into two, sending each of the two beams along different directions in space (each along one of the two arms of the detector), and then recombining the beams. If the beams travelled exactly the same distance, then a detector detecting the recombined beam will see a beam of the same brightness as the original beam, or nothing at all, depending on how the detector is set up. That's because the two waves of the beams will either be in exact harmony, bumping each other up to the original brightness, or exactly cancel each other out. If the travel distance of the two beams are not the same, because a gravitational wave has stretched one arm of the detector and squeezed the other, then the beams won't line up in a constructive or destructive way, but instead be slightly offset from each other. The resulting interference of the beams can be measured.


      About this article

      FQXi logo

      This article is part of our Stuff happens: The physics of events project, run in collaboration with FQXi. Click here to see more articles and videos about gravitational waves.

      • Log in or register to post comments

      Read more about...

      LIGO
      laser interferometry
      gravitational wave
      Stuff happens
      physics of events
      video
      Maths in a minute
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms