Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • News from the world of maths: Mathematical moments - Taking chances with De Moivre

    23 November, 2006
    Thursday, November 23, 2006

    Mathematical moments - Taking chances with De Moivre

    Abraham De Moivre

    Born on the 26th of May 1667 in Vitry-le-Francois, France
    Died on the 27th of November 1754 in London, England

    When De Moivre first came across Newton's famous work the "Principia" he was so struck by its depth and rigour that he immediately bought a copy and cut it into pieces - carrying just a few pages at a time was the only way he could study the work while making his rounds tutoring private students in London.

    But it wasn't just dedication that gained him full marks. Since an early age he had been interested in maths, especially in games of chance, and he is today known as a pioneer of probability theory and of analytic geometry. His "Doctrines of chance" presented the broadest and most rigorous treatment of probability of its day, and he is credited with deriving the normal curve and developing the concept of standard deviation. His name is famously attached to a formula that gives geometric meaning to powers of complex numbers by expressing them in terms of trigonometry.

    De Moivre's eminence as a mathematician was recognised by many of his most prominent contemporaries, including Newton, who he was friends with, and Leibniz. Interestingly, the Royal Society called upon him to referee Newton and Leibniz's dispute about who had first invented the calculus.

    Sadly, though, De Moivre's genius was never rewarded professionally. As a French national who had been expelled from France (after a prison sentence) because of his protestant religion, he remained a foreigner in London. Despite the support of his prominent friends he was never employed by a university. He made a living as a private tutor and died in poverty.

    Death played an important role in his mathematics. Together with Halley, who gave his name to the comet, he set about investigating mortality statistics, laying the foundations for actuary theory used by life insurances.

    Most curiously, De Moivre is said to have used maths to predict his own death. He had noticed that he was sleeping 15 minutes longer every day. Analysing the arithmetic progression 15, 30, 45, .... , he calculated that on the 27th of November 1754 he would sleep through the full 24 hours. He was right - it was the day he died.

    Find out more about De Moivre on the MacTutor history of maths archive, about De Moivre, death and statistics in this past Plus article, and about complex numbers and trigonometry on cut-the-knot.

    posted by Plus @ 4:21 PM

    0 Comments:

    • Log in or register to post comments
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms