Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • News from the world of maths: Plus was brought to you by light

    16 October, 2009
    Friday, October 16, 2009

    Plus was brought to you by light

    This year's Nobel Prize in Physics has gone to three scientists for developing the technology that makes Plus possible. Charles K. Kao has received one half of the prize for developing the optical fibres that transmit information throughout the world. The other half of the prize is shared by Willard S. Boyle and George E. Smith for developing the digital camera's electronic eye, known as the CCD sensor.

    Information is transmitted over the internet using light. A flashing laser beam is directed through optical fibres, with the flashes encoding the 0s and 1s that make up digital information. This process works because when the light beam hits the glass walls of the fibre, it bounces off and is moved forward. Optical fibres had been used even before the invention of the laser, for example by doctors to look into people's stomachs, but they were only capable of transmitting information over very short distances, as the light quickly leaked away when travelling through the fibre. When Charles Kao started working in the field in the 1960s, his aim was to improve the technology so that all of 1% of light would arrive at the end of a 1km long cable. Today, due to Kao's work and the generation of scientists he inspired, this number has increased to 95%! As a result, the network of optical glass fibres that spans the Earth today is over 1 billion km long. If you wrapped that length around the Earth, you would span it more than 25 000 times.

    Light also plays an important role in the work of the other two prize recipients. Boyle and Smith were trying to develop larger memory capacity for computers, when they realised that Albert Einstein's photoelectric effect could be put to good use. According to this effect, electrons can be "knocked about" using light. Boyle and Smith realised that by knocking electrons out of light sensitive cells sitting in a silicone plate, they could transform an optical image into electric signals, which in turn could be turned into digital information. By 1975 Boyle and Smith had used their invention to construct a digital video camera which was good enough to manage TV broadcasts. In 1995, the first ever fully functioning digital camera was produced, and the rest is history. And although the CCD sensor has recently been challenged by another piece of technology, the complementary metal oxide semiconductor, bets are still on as to which of the two will rule the future.

    For more information, visit the Nobel Prize website.

    posted by Plus @ 9:00 AM

    0 Comments:

    • Log in or register to post comments
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms