Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • News from the world of maths: Are the constants of nature really constant?

      17 June, 2009
      Wednesday, June 17, 2009

      In our second online poll to find out what Plus readers would most like to know about the Universe, you told us that you'd like to know if the constants of nature really are constant. We took the question to cosmologist John D. Barrow, Professor of Mathematical Sciences at the University of Cambridge, and here is his answer. Please feel free to discuss the answer by leaving a comment on this blog. We'll periodically check back with the experts to try and answer interesting further questions.

      This article is part of a series to celebrate the International Year of Astronomy 2009. The third poll to find out what you'd like to know most about the Universe is open now, so get voting!

      Labels: IYA2009

      posted by Plus @ 1:15 PM

      6 Comments:

      At 2:36 PM, Blogger Shelly said...

      The speed of light is assumed to be constant. Einstein, Hawkings and many, many other scientists of great renown have assumed this.

      Why? Is there any theoretical proof?

       
      At 4:50 AM, Blogger Seeley said...

      Insightful.

       
      At 9:42 AM, Anonymous The Plus Team said...

      This post has been removed by a blog administrator.

       
      At 9:49 AM, Anonymous The Plus Team said...

      Hi Shelly,

      We took your question about the speed of light to John D Barrow and here is his answer:

      "No, there can never be a proof that the speed of light is constant. Relativity theory requires the speed of light in vacuum to be constant and the same for all observers. All we can do is test whether that is true and hence whether the theory of relativity is a corrrect description of nature. There may be tiny quantum mechanical corrections to the theory which produce very small changes in extreme environments (very small distance, high frequencies or strong gavitational fields)."

      We hope this answers the question!

       
      At 12:03 PM, Blogger Martijn said...

      "An added subtlety is that in most of these possible worlds life cannot exist."

      This leads to another question: what do you mean by 'life'? What makes life special? How can it be that there might be a world where rocks etc. can exist but 'life' (whatever definition you choose for that word) can't?

       
      At 1:55 AM, Anonymous dheeraj said...

      A constant is nothing but it is a derived numerical ratio between the two same fundamental quantities.The constant is said to be a point function,since it is constant at a point when it is made to travel at different atmosphere with different velocities,the value of constant may varie and moreover an example to say that the velocity of light is constant,when abody is made to move with a velocity equal to light then the constant may vary relative to this object speed.so constant is an induvidual point function and independent from the different variables.

       
      • Log in or register to post comments
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms