Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • En-Abeled

      23 April, 2003
      23/04/03



      Name some of the great footballers alive today. Easy - Pele, Ronaldo, Beckham - most of us can manage that, if not a few more. But can you name three of the great mathematicians alive today? John Nash has recently become a household name thanks to Hollywood, and some might remember that Andrew Wiles proved Fermat's Last Theorem, but after that many of us are stumped.

      Now here is another name to add to your list: Jean-Pierre Serre. Serre has just been named as the first winner of the Abel Prize, for "shaping the modern form of many parts of mathematics, including Topology, Algebraic Geometry and Number Theory" (read the past news story on the Abel Prize). Many of the fundamental theorems in these areas are due to Serre, and he has been making significant contributions to mathematics for over fifty years. When he was only 28 he won the Fields Medal (the other mathematics prize of similar prestige to the Nobel), and no one else so young has won the prize since.

      The algebraic methods that Serre developed revolutionised Topology. Topology is the study of those features of a space that remain unchanged when it is deformed or stretched. Length isn't one of these, as when you blow up a balloon a line drawn on it will be stretched. However, if you try to find all the ways of drawing closed curves, or circles, on a ball, you will find that there is only one. Any circle you draw on a ball can be stretched over its surface, like a rubber band, to form any other circle you could draw. However, for a doughnut there are more ways to draw different circles on the surface that can't be stretched or pulled to look the same.

       

      The surface of a doughnut is not the same as that of a ball

      The surface of a doughnut is not the same as a ball. There is only one type of closed curve on the surface of a ball, whereas there are many different closed curves on the surface of a doughnut, including the three shown here.

       

      You can often distinguish topologically between two spaces, like the surfaces of a ball or a doughnut, by seeing how many different closed curves they contain. Serre developed an algebraic method of counting the number of ways to put higher dimensional versions of circles in certain spaces, enabling a wide range of topological questions to be tackled.

      Algebraic methods also allowed Serre to make significant contributions to Algebraic Geometry. The link between algebra and geometry is something many of us have already experienced in school. Two non-parallel lines on the Euclidean plane intersect at one point, representing the single solution to the system of two linear equations describing the lines. Serre developed the algebraic methods necessary to determine when complicated geometric constructions can be used to solve systems of polynomial equations.

      While Serre's work in Number Theory is connected in many ways to the mathematical ideas of Niels Henrik Abel, the Norwegian mathematician honoured by the Abel Prize, it is also relevant to current research. His work in this area has helped to set the stage for many recent results, including Andrew Wiles' monumental proof of Fermat's Last Theorem.

      Mathematicians welcome the choice of Serre as the first recipient of the Abel Prize. They hope that the creation of such a prestigious prize in mathematics, with a respectable cash reward of over £500,000, will help raise the profile of mathematics in wider society, just as the Nobel Prizes have for Physics, Chemistry and Economics. In creating the prize, the Norwegian government also hoped to stimulate young people's interest in mathematics. Perhaps one day children will have pin-ups of their favourite mathematicians on their bedroom wall, next to their posters of David Beckham.

       

       

      Read more about...
      Nobel prize
      fields medal
      Abel prize
      algebra
      • Log in or register to post comments

      Read more about...

      Nobel prize
      fields medal
      Abel prize
      algebra
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms