
Introduction
Two elementary series are studied in school mathematics:
- arithmetic series, such as
and
- geometric series, such as
There is an equally elementary series, called the {\em harmonic series}:
Why is the series called "harmonic"?

Fifths
The name originated with the Greeks, who as we know had words for many things. It was Pythagoras who was the first person to study the notes emitted by plucked strings of various lengths. If a string which emits middle C when plucked is reduced to two-thirds of its length, it will emit the note G (musicians call the interval from C to G a fifth). If the string is halved in length, it will emit top C, an octave higher. These notes are fundamental to the Pythagorean theory of harmony, and the corresponding lengths of string
are said to be in harmonic progression, with 2/3 the harmonic mean of 1 and 1/2. Now the inverses of these numbers
1 2/3 1/2
form an arithmetic progression, and so it is that a sequence of numbers whose inverses are in arithmetic progression is said to be in harmonic progression.
1 3/2 2

The Cube and the Octahedron
Pythagoras mixed his mathematics and physics with a liberal helping of mystical mumbo-jumbo. He noted, for example, that a cube has 6 faces, 8 vertices, and 12 edges. Since 6, 8 and 12 are in harmonic progression, to Pythagoras the cube was a "harmonic" body. Are there any other "harmonic" bodies? There is the octahedron, with 8 faces, 12 edges and 6 vertices. Are there any others? It's a
simple enough question, but I've not seen it asked before. The problem of finding all harmonic bodies requires a knowledge of Euler's formula for polyhedra and Pell's equation for its solution.
The sum of harmonic series
There is no simple formula, akin to the formulae for the sums of arithmetic and geometric series, for the sum
Nevertheless, we can answer the question: What is the sum "to infinity" of the harmonic series?
You might be excused for thinking that the sum to infinity of the harmonic series is some finite number, because as you add more and more terms, less and less is added to the running total. Indeed, if you asked your friendly pocket calculator or home computer to sum the series, you would get a finite sum. That is because your typical calculator handles numbers only up to a certain size (usually 10100), and would regard 1/(10100+1) as zero. Such a calculator would tell you that the sum of the harmonic series is about 230, if you let it run long enough.
However, the harmonic series actually diverges - the sum increases without bound. This surprising result was first proved by a mediaeval French mathematician, Nichole Oresme, who lived over 600 years ago. He noted that if you replace the series
If

Missing the cracks
Suppose that
Record rainfalls

How often are weather records broken? The harmonic series gives the answer.
Suppose we have a list of rainfall figures for a hundred years. How many record-breaking falls of rain do you expect have taken place over that period? We assume that the rainfall figures are random, in the sense that the amount of rain in any one year has no influence on the rainfall in any subsequent year.
The first year was undoubtedly a record year. In the second year, the rain could equally likely have been more than, or less than, the rainfall of the first year. So there is a probability of
Even after a record-breaking rainfall, nobody will deny that the record will be broken some time in the future - perhaps in the very next year. The number of record years in an infinity of observations is clearly infinity. There we have an intuitive reason for believing that the harmonic series diverges.
Athletic records do not follow the same pattern, since they are not random in the way rainfall records are random. Athletes are always trying to break the current record, and training methods are continually being improved. Nobody is doing anything about improving the weather.
For the record, in both senses, here are some values of
n | 1 | 5 | 10 | 50 | 100 | 500 | 1000 |
---|---|---|---|---|---|---|---|
H(n) | 1 | 2.28 | 2.93 | 4.50 | 5.19 | 6.79 | 7.49 |
Traffic flow

Bunched Traffic
In single-lane traffic, with no overtaking, a slow car will be followed by a bunch of cars wanting to go faster, but unable to do so. If
Testing to destruction
Suppose you have a hundred similar wooden beams and want to find their minimum breaking strain. You build a simple machine which applies a gradually increasing forceA test to destruction carried out in this way has one major disadvantage. At the end you know the precise value of
Test the first beam to destruction, and record its breaking strain (
This procedure successively finds the record minimum breaking strains. Only beams with record low breaking strains are destroyed by the test. Out of one hundred beams, you expect to destroy 5.19 by this sequential testing to destruction. If you had a thousand beams to test, you would expect to destroy only 7.49.
Shuffling cards

Just about the simplest (mathematically speaking) way of shuffling cards is called the "Top in at random" shuffle. The top card of a card deck of
Let us follow the progress of the card which is initially at the bottom of the deck. This card (label it
Crossing the desert
This little problem achieved a great deal of attention during the last war - so much so that it was rumoured to have been devised by the Germans and parachuted into Britain in order to distract British scientists from the war effort.You have to cross the desert in a jeep. There are no sources of fuel in the desert, and you cannot carry enough fuel in the jeep in order to make the crossing in one go. You haven't the time to establish fuel dumps, but you do have a large supply of jeeps. How can you get across the desert, using the minimum amount of fuel?
Let us measure the distance a jeep can travel in terms of a tankful of fuel. One jeep by itself can travel a distance of one tankful. If two jeeps set out together, they travel for 1/3 of a tankful, then Jeep 2 transfers 1/3 of its tankful to Jeep 1, and returns to base on the remaining 1/3 tankful. Jeep 1 is then able to travel a total of 1+1/3 tankfuls.
With three jeeps, stop after travelling 1/5 of a tankful, and transfer 1/5 of a tankful from jeep 3 into each of Jeeps 1 and 2, which are now full. Jeep 3 now has 2/5 of a tankful, Jeeps 1 and 2 now proceed as before, with Jeep 2 returning with an empty tank to Jeep 3. Between them, they have enough fuel to get back to base. Meanwhile, Jeep 1 has travelled a total of 1+1/3+1/5 tankfuls.
The same reasoning shows that with four jeeps you can get a distance of 1+1/3+1/5+1/7 tankfuls, and with
Here we have a new series, which is also harmonic (the reciprocals are in arithmetic progression), and also diverges, for clearly
Other series
We have just seen that the series
The proof of this fact is a little too complicated to give here (although it's only first-year university level) so I'll leave you to try to discover it yourself. When you've proved that this series diverges, you can deduce as a corollary that there are infinitely many prime numbers, though there is a simpler way of proving this fact.
Instead of deleting all terms with composite denominators, let's delete every term which has a zero in its denominator. It looks as though one is deleting roughly one in ten of the terms of the original harmonic series. Thus it seems a reasonable guess that the leftover series diverges, and it may be a shock to your intuition to learn that your guess is wrong.
Let us look first at all terms of the leftover series with just one digit in the denominator. There are exactly 9 of these, and they are all less than 1. Their sum is thus less than 9.
Next, look at the terms of this series with exactly two digits in their denominator. There are 81 of these, all less than 1/10. Their sum is less than
In general, there are
The logarithmic connection
Let us now go back to Oresme's proof that the harmonic series diverges, which was achieved by showing that
Your will recall that Pythagoras noticed that the note emitted by a plucked string rose by an interval of a fifth if the string was reduced to 2/3 of its length. He also noted that the interval of a fourth was obtained by reducing the string to 3/4 of its length. The difference between a fourth and a fifth is a tone, whose ratio (8/9) is obtained by dividing 2/3 by 3/4. That is probably the earliest manifestation of a logarithmic law.
The link between the harmonic series and logarithms is even more intimate. A more careful analysis of Oresme's inequality, which requires a little calculus, shows that
About the author

John H. Webb was born in Cape Town and studied mathematics at the University of Cape Town. He won a scholarship to Cambridge where he obtained a Ph D. Back at the University of Cape Town, his career as a research mathematician was eventually overtaken by interests in mathematics education, with particular emphasis on popularising mathematics and identifying and stimulating promising students.
He edits Mathematical Digest, a quarterly magazine for high schools, runs a maths competition for schools in the Cape Town area, and directs a nationwide Mathematical Talent Search, a problem-solving programme by correspondence which selects and trains South African teams for the International Mathematical Olympiad.
He is at present on sabbatical leave, and is spending six months working with the Millennium Mathematics Project in Cambridge. His visit is supported by the Institute of Actuaries.
Comments
Thanks!
Thanks for the informative and well-organized post! As a first year university student, I've been mesmerized by the fact that the harmonic series diverges whereas the p-series with p>1 actually converges! This was a great explanation for the former.
Thanks a lot!
Very beautiful and useful article with amazing pictures.
thanks
beautiful article but the exercise of the desert doesn't it need to be
1+1/3+1/5+...+1/(2n-1) tankfuls wide
Record rainfalls
In the rainfalls example, why don't you say in the third year (and any year thereafter) the rain could equally likely have been more than, or less than, the rainfall of the record year so far. So there always is a probability of 1/2 that any year was a record year.?